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ABSTRACT

We have developed a new gravity gradient inversion method
for estimating a 3D density-contrast distribution defined on a
grid of rectangular prisms. Our method consists of an iterative
algorithm that does not require the solution of an equation sys-
tem. Instead, the solution grows systematically around user-
specified prismatic elements, called “seeds,” with given density
contrasts. Each seed can be assigned a different density-contrast
value, allowing the interpretation of multiple sources with dif-
ferent density contrasts and that produce interfering signals. In
real world scenarios, some sources might not be targeted for
the interpretation. Thus, we developed a robust procedure that
neither requires the isolation of the signal of the targeted sources
prior to the inversion nor requires substantial prior information
about the nontargeted sources. In our iterative algorithm, the

estimated sources grow by the accretion of prisms in the periph-
ery of the current estimate. In addition, only the columns of the
sensitivity matrix corresponding to the prisms in the periphery
of the current estimate are needed for the computations. There-
fore, the individual columns of the sensitivity matrix can be cal-
culated on demand and deleted after an accretion takes place,
greatly reducing the demand for computer memory and proces-
sing time. Tests on synthetic data show the ability of our method
to correctly recover the geometry of the targeted sources, even
when interfering signals produced by nontargeted sources are
present. Inverting the data from an airborne gravity gradiometry
survey flown over the iron ore province of Quadrilátero Ferrí-
fero, southeastern Brazil, we estimated a compact iron ore body
that is in agreement with geologic information and previous
interpretations.

INTRODUCTION

Historically, the vertical component of the gravity field has been
widely used in exploration geophysics due to the simplicity of its
measurement and interpretation. This fact propelled the develop-
ment of a large variety of gravity inversion methods. Conversely,
the technological difficulties in the acquisition of accurate airborne
gravity gradiometry data resulted in a delay in the development of
methods for the inversion of this kind of data. Consequently, before
the early 1990s, few papers published in the literature were devoted
to the interpretation (or analysis) of gravity gradiometer data. At this
point, two papers deserve the general readers’ attention. The first
one is Vasco (1989) which presents a comparative study of the ver-
tical component of gravity and the gravity gradient tensor by ana-
lyzing their parameter resolution and variance matrices. The second
paper is Pedersen and Rasmussen (1990) which studied data of
gravity and magnetic gradient tensors and introduced scalar invar-
iants that indicate the dimensionality of the sources.

Recent technological developments of moving-platform gravity
gradiometers made it feasible to accurately measure the five linearly
independent components of the gravity gradient tensor. These tech-
nological advances, paired with the advent of global positioning
systems (GPS), have opened a new era in the acquisition of accurate
airborne gravity gradiometry data. Thus, airborne gravity gradiome-
try has come to be a useful tool for interpreting geologic bodies
present in mining and hydrocarbon exploration areas. Gravity gra-
diometry has the advantage, compared with other gravity methods,
of being extremely sensitive to localized density contrasts within
regional geologic settings (Zhdanov et al., 2010b).
Recently, some gravity gradient inversion algorithms have been

adapted to predominantly interpret both orebodies that are impor-
tant mineral exploration targets (e.g., Li, 2001; Zhdanov et al.,
2004; Martinez et al., 2010; Wilson et al., 2011), and salt bodies
in a sedimentary setting (e.g., Jorgensen and Kisabeth, 2000; Routh
et al., 2001). All these methods discretize the earth’s subsurface
into prismatic cells with homogeneous density contrasts and
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estimate a 3D density-contrast distribution, thus retrieving an image
of geologic bodies. Usually, a gravity gradient data set contains a
huge volume of observations of the five linearly independent tensor
components. These observations are collected every few meters in
surveys that may contain hundreds to thousands of line kilometers.
This massive data set combined with the discretization of the earth’s
subsurface into a fine grid of prisms results in a large-scale 3D
inversion with hundreds of thousands of parameters and tens of
thousands of data.
The solution of a large-scale 3D inversion requires overcoming

two main obstacles. The first one is the large amount of computer
memory required to store the matrices used in the computations,
particularly the sensitivity matrix. The second obstacle is the com-
putational time required for matrix-vector multiplications and to
solve the resulting linear system. One approach to overcome these
problems is to use the fast Fourier transform for matrix-vector mul-
tiplications by exploiting the translational invariance of the kernels
to reduce the linear operators to Toeplitz block structure (Pilking-
ton, 1997; Zhdanov et al., 2004; Wilson et al., 2011). However,
these approaches are unable to deal with data on an irregular grid
or on an uneven surface. Furthermore, the observations must lie
above the surface topography, so these approaches cannot be ap-
plied to borehole data. Another strategy for the solution of large-
scale 3D inversions involves using a variety of data compression
techniques. Portniaguine and Zhdanov (2002) use a compression
technique based on cubic interpolation. Li and Oldenburg (2003)
use a 3D wavelet compression on each row of the sensitivity matrix.
Most recently, an alternative strategy for the solution of large-scale
3D inversion has been used under the name of “moving footprint”
(Cox et al., 2010; Zhdanov et al., 2010a; Wilson et al., 2011). In this
approach the full sensitivity matrix is not computed; rather, for each
row, only the few elements that lie within the radius of the footprint
size are calculated. In other words, the jth element of the ith row of
sensitivity matrix only needs to be computed if its distance from
the ith observation is smaller than a prespecified footprint size
(expressed in kilometers). The footprint size is a threshold value
defined by the user and will depend on the natural decay of the
Green’s function for the gravity field. The smaller the footprint size,
the larger the number of null elements in the rows of the sensitivity
matrix; hence, the faster the inversion will be but also the greater is
the loss of accuracy. The user can then either accept the result or
increase the footprint size and restart the inversion. This procedure
leads to a sparse representation of the sensitivity matrix allowing the
solution of intractable large-scale 3D inversions via the conjugate
gradient technique.
Depending on the regularization function used, inversion meth-

ods for estimating a 3D density-contrast distribution that discretize
the earth’s subsurface into prismatic cells can produce either blurred
images (e.g., Li and Oldenburg, 1998) or sharp images of the anom-
alous sources (e.g., Portniaguine and Zhdanov, 1999; Zhdanov
et al., 2004; Silva Dias et al., 2009, 2011). Nevertheless, all of
the above-mentioned methods require the solution of a large linear
system, which is, as pointed out before, one of the biggest compu-
tational hurdles for large-scale 3D inversions. Alternatively, there is
a class of gravity inversion methods that do not solve linear systems
but instead search the space of possible solutions for an optimum
one. This class can be further divided into methods that use random
search and those that use systematic search algorithms. Among
the methods that use random search, we draw attention to the

two following methods. Nagihara and Hall (2001) estimate a 3D
density-contrast distribution using the simulated annealing algo-
rithm (SA). Krahenbuhl and Li (2009) retrieve a salt body subject
to density contrast constraints by developing a hybrid algorithm that
combines the genetic algorithm (GA) with a modified form of SA as
well as a local search technique that is not activated at every gen-
eration of the GA. On the other hand, examples of methods that use
a systematic search are the methods of Zidarov and Zhelev (1970),
Camacho et al. (2000), and René (1986). Zidarov and Zhelev’s
(1970) bubbling method looks for a compact source solution (with-
out hollows in its interior) by transforming a given initial nonnull
spatially discrete density-contrast distribution ρ inside a region ℜ
into a constant distribution ρ� ≤ ρ inside a region ℜ� ⊃ ℜ by suc-
cessive redistribution of the excess of mass of ρ relative to ρ� in
outward directions. Both distributions fit the gravity data. To over-
come the difficulty of setting an initial density-contrast distribution
ρ that not only fits the data, but also satisfies the constraint that ρ be
everywhere greater than or equal to a specified upper bound,
Cordell (1994) adapts the bubbling method starting with point mass
estimates obtained via Euler’s homogeneity equation. Following the
class of systematic search methods, Camacho et al. (2000) estimates
a 3D density-contrast distribution using a systematic search to itera-
tively “grow” the solution, one prismatic element at a time, from a
starting distribution with zero density contrast. At each iteration a
new prismatic element is added to the estimate with a prespecified
positive or negative density contrast. This new prismatic element is
chosen by systematically searching the set of all prisms that still
have zero density contrast for the one whose incorporation into
the estimate minimizes a goal function composed of the data-misfit
function plus the l2-norm of the weighted 3D density-contrast dis-
tribution. Also belonging to the class of systematic search methods
is René (1986), which is able to recover 2D compact bodies (i.e.,
with no hollows inside) with sharp contacts by successively incor-
porating new prisms around user-specified prisms called seeds.
These seeds have a given set of density contrasts, all of which must
have the same sign. At the first iteration, the new prism that will be
incorporated is chosen by systematically searching the set of
neighboring prisms of the seeds for the one that minimizes a
“shape-of-anomaly” function. From the second iteration on, the
search is performed over the set of available neighboring prisms
of the current estimate. Thus, the solution grows through the addi-
tion of prisms to its periphery, in a manner mimicking the growth
of crystals. René’s (1986) method is restricted to interpret density-
contrast distributions with a single sign and its estimated solution
can be allowed to grow in any combination of user-specified
directions.
These inversion methods that do not solve linear systems have

been applied to the vertical component of the gravity field yielding
good results. To our knowledge, such class of methods has not been
previously applied to interpret gravity gradiometry data. Beside,
these methods are unable to deal with the presence of interfering
signals produced by nontargeted sources that can be interpreted
as geologic noise. This is a common scenario encountered in com-
plex geologic settings where the signal of nontargeted sources can-
not be completed removed from the data. In the literature, few
inversion methods have addressed this issue of interpreting only tar-
geted sources when in the presence of nontargeted sources in a geo-
logic setting (e.g., Silva and Holmann, 1983; Silva and Cutrim,
1989; Silva Dias et al., 2007). The typical approach is to require
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the interpreter to perform some sort of data preprocessing to remove
the signal produced by the nontargeted geologic sources. This pre-
processing generally involves filtering the observed data based on
the assumed spectral content of the targeted sources. However, se-
parating the signal of multiple sources often is impractical, if not
impossible. An effective way to overcome this problem is to devise
an inversion method that simultaneously estimates targeted geolo-
gic sources and reduces the undesired effects produced by the non-
targeted sources by means of a robust data-fitting procedure. Silva
and Holmann (1983) and Silva and Cutrim (1989), for example,
minimized, respectively, the l1-norm and the Cauchy-norm of
the residuals (the difference between the observed and predicted
data) to take into account the presence of nontargeted sources. Both
data-fitting procedures are more robust than the typical least-
squares approach of minimizing the l2-norm of the residuals
because they allow the presence of large residual values.
We present a new gravity gradient inversion for estimating a 3D

density-contrast distribution belonging to the class of methods that
do not solve linear systems, but instead implement a systematic
search algorithm. Like René (1986), we incorporate prior informa-
tion into the solution using seeds (i.e., user-specified prismatic ele-
ments) around which the solution grows. In contrast with René’s
(1986) method, our approach can be used to interpret multiple geo-
logic sources with density contrasts of different signs. This is pos-
sible because our approach allows assigning a different density
contrast to each seed and does not impose any restrictions on
the sign of the gravity anomaly. We impose compactness on the
solution using a modified version of the regularizing function pro-
posed by Silva Dias et al. (2009). We use as a data-misfit function
the l1-norm of the residuals because it tolerates large data residuals.
This is a desirable feature of the l1-norm because it means that it is
less influenced by outliers in the observed data and nontargeted
sources. Therefore, our approach requires neither substantial
amounts of prior information about the nontargeted sources nor
the isolation of the effect of the targeted sources through preproces-
sing. Finally, we exploit the fact that our systematic search is limited
to the neighboring prisms of the current estimate to implement a
lazy evaluation (Henderson and Morris, 1976) of the sensitivity ma-
trix, thus achieving a fast and memory efficient inversion. Tests on
synthetic data and on airborne gravity gradiometry data collected
over the Quadrilátero Ferrífero, southeastern Brazil, confirmed
the potential of our method in producing sharp images of the tar-
geted anomalous density distribution (iron orebody) in the presence
of nontargeted sources.

METHODOLOGY

Let gαβ be an L-dimensional vector that contains observed values
of the gαβ-component of the gravity gradient tensor, where α and β
belong to the set of x-, y-, and z-directions of a right-sided Cartesian
coordinate system (Figure 1). We define this coordinate system with
its x-axis pointing north, y-axis pointing east, and z-axis pointing
down. We assume that gαβ is caused by an anomalous density dis-
tribution contained within a 3D region of the subsurface. This re-
gion can be discretized into juxtaposed 3D right rectangular prisms
composing an interpretative model (Figure 1). Each prism in
this model has a homogeneous density contrast and the resulting
piecewise-constant anomalous density distribution is assumed
to be sufficient to approximate the true one. It follows that the
gαβ-component of the gravity gradient tensor produced by the

anomalous density distribution can be approximated by the sum
of the contributions of each prism of the interpretative model, i.e.,

dαβ ¼
XM
j¼1

pja
αβ
j : (1)

This linear relationship can be written in matrix notation as

dαβ ¼ Aαβp; (2)

where p is an M-dimensional vector whose jth element, pj, is the
density contrast of the jth prism of the interpretative model, dαβ is
an L-dimensional vector of data predicted by p, which one would
expect approximates gαβ, and Aαβ is the L ×M sensitivity matrix,
whose jth column is the L-dimensional vector aαβj . The ith element
of aαβj is numerically equal to the gαβ-component of the gravity gra-
dient tensor caused by the jth prism of the interpretative model,
with unit density contrast, calculated at the place where the ith ob-
servation was made. It is then evident that the jth column of the
sensitivity matrix represents the influence that pj has on the pre-
dicted data. The elements of matrix Aαβ can be calculated using
the formulas of Nagy et al. (2000).
Let rαβ be the L-dimensional residual vector of the gαβ-

component of the gravity gradient tensor, i.e.,

rαβ ¼ gαβ − dαβ. (3)

We define the data-misfit function ϕαβðpÞ of the gαβ-component of
the gravity gradient tensor as a norm of the residual vector rαβ. For a
least-squares fit, ϕαβðpÞ is defined as the l2-norm of the residual

Figure 1. Schematic representation of the interpretative model con-
sisting of a grid of M juxtaposed 3D right-rectangular prisms. The
interpretative model used to parametrize the anomalous density dis-
tribution is shown in gray. The observed gyz- and gzz-components of
the gravity gradient tensor produced by the anomalous density
distribution are shown in gray-scale contour maps. Δx, Δy, and
Δz are the lengths of the interpretative model in the x-, y-, and
z-dimensions, respectively.
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vector. The least-squares fit distributes the residuals assuming that
the errors in the data follow a short-tailed Gaussian distribution and
thus sporadically large residual values are highly improbable
(Claerbout and Muir, 1973; Silva and Holmann, 1983; Menke,
1989; Tarantola, 2005). Hence, the l2-norm is known to be sensi-
tive to outliers in the data, which can result from either gross errors
or geologic noise (i.e., anomalous densities which are not of interest
to the interpretation). On the other hand, if occasional large resi-
duals are desired in the inversion, one can use the l1-norm of
the residual vector. Here, we have chosen the normalized l1-norm
of the L-dimensional residual vector rαβ, hence, the data-misfit
function is defined as

ϕαβðpÞ ¼
krαβk1
kgαβk1

¼
P

L
i¼1 jgαβi − dαβi jP

L
i¼1 jgαβi j . (4)

In this case, the errors in the data are assumed to follow a long-tailed
Laplace distribution and a more robust fit is obtained because the
predicted data will be insensitive to outliers.
Let us assume that there are Nc-components of the gravity tensor

available. Hence, the total data-misfit function ΦðpÞ can be defined
as the sum of the individual data-misfit functions for each of the
Nc-components, i.e.,

ΦðpÞ ¼
XNc

k¼1

ϕkðpÞ; (5)

where ϕkðpÞ is the kth function in the set of Nc available data-misfit
functions. For example, if the available components are gxx, gyy, and
gzz, in that order, then Nc ¼ 3 and ϕ1ðpÞ ≡ ϕxxðpÞ, ϕ2ðpÞ ≡ ϕyyðpÞ,
and ϕ3ðpÞ ≡ ϕzzðpÞ, all given by equation 4.
Regardless of the norm used in the data-misfit function, the in-

verse problem of estimating a 3D density-contrast distribution from
gravity gradiometry data is ill-posed and requires additional con-
straints to be transformed into a well-posed problem with a unique
and stable solution. The constraints chosen for our method are:

Constraint 1:
The solution should be compact (i.e., without any hollows inside it).

Constraint 2:
The excess (or deficiency of) mass contained in the solution should
be concentrated around user-specified prisms of the interpretative
model with known density contrasts (referred to as “seeds”).

Constraint 3:
The only density-contrast values allowed are zero or the values as-
signed to the seeds.

Constraint 4:
Each element of the solution should have the density contrast of the
seed closest to it.

We solve the constrained inverse problem of estimating a parameter
vector p subject to these constraints through an iterative algorithm
named “planting algorithm,” as explained bellow. At each iteration,
this algorithm evaluates the goal function

ΓðpÞ ¼ ΦðpÞ þ μθðpÞ; (6)

where θðpÞ is a regularizing function defined in the parameter
(model) space that imposes physical and/or geologic attributes
on the solution. The scalar μ is a regularizing parameter that bal-
ances the tradeoff between the total data-misfit function ΦðpÞ
(equation 5) and the regularizing function θðpÞ. The regularizing
function θðpÞ is an adaptation of the one used in Silva Dias
et al. (2009), which in turn is a modified version of the one used
by Guillen and Menichetti (1984) and Silva and Barbosa (2006). It
enforces the compactness of the solution and the concentra-
tion of mass around the seeds (i.e., constraints 1 and 2), being
defined as

θðpÞ ¼ 1

f

XM
j¼1

pj

pj þ ϵ
lj; (7)

where pj is the jth element of p, lj is the distance between the cen-
ter of the jth prism and the center of a seed (see subsection Planting
algorithm), ϵ is a small positive scalar used to avoid a singularity
when pj ¼ 0, and the scalar f is the average extent of the interpre-
tative model, defined as

f ¼ Δxþ Δyþ Δz
3

; (8)

where Δx, Δy, and Δz are the lengths of the interpretative model in
the x-, y-, and z-directions, respectively (Figure 1).
In practice, the scalar ϵ (equation 7) is not necessary because one

can add either zero or lj when evaluating the regularizing function.
Furthermore, the value of the regularizing parameter μ should be
selected through trial and error. A small value of μ is not able to
estimate compact sources, whereas a large value of μ produces com-
pact solutions that might not fit the observed data. To determine an
adequate value for μ, we start with a small value, typically 10−5.
Then, if needed, the value is raised until the estimated density-
contrast distribution achieves the desired compactness.
The two remaining constraints (3 and 4) are imposed algorithmi-

cally, as explained bellow.

Planting algorithm

Our systematic search algorithm, named planting algorithm, re-
quires that a set of NS seeds and their associated density-contrast
values be specified by the user. Each seed is a prism of the inter-
pretative model. We emphasize that the density-contrast values of
the seeds do not need to be the same. These seeds should be chosen
according to prior information about the targeted anomalous
sources, such as those provided by the available geologic models,
well logs, and interpretations using other geophysical data sets. The
planting algorithm starts with an initial parameter vector that in-
cludes the density-contrast values assigned to the seeds and has
all other elements set to zero (Figure 2a). Hence, by recalling equa-
tions 1 and 3, we can define the initial residual vector of the gαβ-
component of the gravity gradient tensor as

rαβð0Þ ¼ gαβ −
�XNS

s¼1

ρsa
αβ
js

�
; (9)
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where ρs is the density contrast of the sth seed, js is the correspond-
ing index of the sth seed in the parameter vector p, and aαβjs is
the L-dimensional column vector of the sensitivity matrix Aαβ

(equation 2) corresponding to the sth seed. We can then proceed
to calculate the initial total data-misfit function Φð0Þ (equation 5),
which depends on rαβð0Þ.
The solution to the constrained inverse problem is then built

through an iterative growth process. Initially, to each seed is as-
signed a list of its neighboring prisms (prisms that share a face with
the seed). An iteration of the growth process consists of attempting
to grow, one at a time, each of the NS seeds by performing the ac-
cretion of a prism from the seed’s list of neighboring prisms. We
define the accretion of a prism as changing its density-contrast value
from zero to the density contrast of the seed undergoing the accre-
tion, guaranteeing constraint 3. Thus, a growth iteration is com-
posed of at most NS accretions, one for each seed. Furthermore,
constraint 4 is guaranteed because only prisms from the list of
neighboring prisms of the seed undergoing the accretion are eligible
to be accreted to that seed.
The choice of a neighboring prism for the accretion to the sth

seed follows two criteria:

• The addition of the neighboring prism to the current estimate
should reduce the total data-misfit function ΦðpÞ (equa-
tion 5), as compared with the previous accretion iteration.
This ensures that the solution grows in a way that best fits
the observed data. To avoid an exaggerated growth of the
estimated anomalous densities, the algorithm does not per-
form the accretion of neighboring prisms that produce very
small changes in the total data-misfit function. The criterion
for how small a change is accepted is based on whether the
following inequality holds:

jΦðnewÞ −ΦðoldÞj
ΦðoldÞ

≥ δ; (10)

where ΦðnewÞ is the total data-misfit func-
tion evaluated with the chosen neighbor-
ing prism included in the estimate, ΦðoldÞ
is the total data-misfit function evaluated
during the previous accretion iteration,
and δ is a positive scalar typically ranging
from 10−3 to 10−6. Parameter δ controls
how much the anomalous densities are al-
lowed to grow. The choice of the value of
δ depends on the size of the prisms of the
interpretative model. The smaller the
prisms are, the smaller their contribution
to ΦðpÞ will be, and thus, the smaller δ
should be.

• The addition of the neighboring prism
with density contrast ρs to the current es-
timate should produce the smallest value
of the goal function ΓðpÞ (equation 6) out
of all other prisms in the list of neighbor-
ing prisms of the sth seed that obeyed the
first criterion. Thus, the accretion of the
neighboring prism to the current estimate
will produce the highest decrease in the

total data-misfit function (equation 5) as well as the lowest
increase in the regularizing function θðpÞ (equation 7). This
ensures that constraints 1, 2, and 4 are met. We clarify here
that the term lj in equation 7 is the distance between the cen-
ter of the jth prism and the center of the sth seed (i.e., the one
that is undergoing the accretion). We stress that the jth prism
belongs to the list of neighboring prisms of the sth seed.

Once the accretion of the jth prism is performed to the sth seed,
the neighboring prisms of the jth prism are included in the sth
seed’s list of neighboring prisms and the jth prism is removed from
this list (Figure 2b). It is important to note that the list of seeds is not
modified along the iterations of our algorithm. Rather, the list of
neighboring prisms of a seed varies each time it suffers an accretion.
Finally, we update the residual vectors of the Nc available compo-
nents. The updated residual vector of the gαβ-component of the
gravity gradient tensor is given by

rαβðnewÞ ¼ rαβðoldÞ − pja
αβ
j ; (11)

where rαβðnewÞ is the updated residual vector, r
αβ
ðoldÞ is the residual vec-

tor evaluated in the previous accretion iteration, j is the index of the
neighboring prism chosen for the accretion, pj ¼ ρs, and aαβj is the
jth column vector of the sensitivity matrixAαβ. In the case that none
of the neighboring prisms of the sth seed meet the first criterion, the
sth seed does not grow during this growth iteration. This ensures
that different seeds can produce anomalous densities of different
sizes. The growth process continues while at least one of the seeds
is able to grow. At the end of the growth process, our planting algo-
rithm should yield a solution composed of compact anomalous den-
sities with variable sizes (Figure 2c). Uieda and Barbosa (2012a)
show an animation of this growth process when the planting algo-
rithm is applied to synthetic data of the gzz-component of the gravity
gradient tensor.

Figure 2. Two-dimensional sketch of three stages of the planting algorithm. Black dots
represent the observed data and the red line represents the predicted data produced by the
current estimate. The light gray grid of prisms represents the interpretative model. (a) In-
itial state with the user-specified seeds included in the estimate with their corresponding
density contrasts and all other parameters set to zero. (b) End of the first growth iteration
where two accretions took place, one for each seed. The list of neighboring prisms of
each seed and the predicted data are updated. (c) Final estimate at the end of the algo-
rithm. The growth process stops when the predicted data fits the observed data.
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Lazy evaluation of the sensitivity matrix

In our planting algorithm, all elements of the parameter vector
not corresponding to the seeds start with zero density contrast. It
is then noticeable from equations 1 and 9 that the columns of
the sensitivity matrices Aαβ that do not correspond to the seeds
are not required for the initial computations. Moreover, the search
for the next element of the parameter vector for the accretion is re-
stricted to the list of neighboring prisms of the seeds. This means
that the jth column vectors aαβj of the sensitivity matrices only need
to be calculated once the jth prism of the interpretative model be-
comes eligible for accretion (i.e., becomes a member of the list of
neighboring prisms of a seed). In addition, our algorithm updates
the residual vectors after each successful accretion through equa-
tion 11. Once the jth prism is permanently incorporated into the
current solution, the column vectors aαβj are no longer needed. Thus,
the full sensitivity matrices Aαβ are not needed at any single time
during the growth process. Column vectors of Aαβ can be calculated
on demand and deleted once they are no longer required (i.e., after
an accretion). This technique is known in computer science as a
“lazy evaluation” (Henderson and Morris, 1976). Because the com-
putation of the full sensitivity matrix is a time- and memory-
consuming process, the implementation of a lazy evaluation of
Aαβ leads to fast inversion times and low memory usage, making
viable the inversion of large data sets using fine grids of prisms for
the interpretative models without needing supercomputers or data
compression algorithms (e.g., Portniaguine and Zhdanov, 2002).

Presence of nontargeted sources

In real world scenarios, there are interfering signals produced by
multiple and horizontally separated sources (Figure 3a). Some of

these sources may be of no interest to the interpretation (i.e., non-
targeted sources) or there may not be enough available prior infor-
mation about them, like their approximate depths or density
contrasts. Furthermore, in most cases, it is not possible to separate
the signal of the targeted and the nontargeted sources. It would then
be desirable to provide seeds only for the targeted sources and that
the estimated density-contrast distribution could be obtained with-
out being affected by the signal of the nontargeted sources. For this
purpose, one can use the l1-norm of the residual vector (equation 4)
to allow large residual values in the signal that is most influenced by
the nontargeted sources (Figure 3b). Thus, the inversion is less in-
fluenced by the signal yielded by the nontargeted sources by treat-
ing it as outliers in the data. Note that the l1-norm by itself does not
“know” which parts of the data should be treated as outliers. This
information is indirectly incorporated into the inversion through the
locations of the seeds provided for the targeted sources only. There-
fore, the l1-norm has to be used in conjunction with the strong
mass-concentration constraints imposed by the regularizing func-
tion (equation 7).
This robust procedure allows one to choose the targets of the in-

terpretation without having to isolate their signal before performing
the inversion. It also eliminates the need for prior information about
the density contrast and approximate depth of the nontargeted
sources, although their approximate horizontal locations are still re-
quired. Additionally, by using the l1-norm of the residual vector,
we can also handle noisy outliers in the data, such as instrumental or
operational errors.

APPLICATION TO SYNTHETIC DATA

We applied our method to synthetic noise-corrupted data of the
gyy-, gyz-, and gzz-components of the gravity gradient tensor.
Figure 4a shows a color-scaled map of the synthetic gzz-component.
Color-scaled maps of the gyy- and gyz-components are provided in
Figure 1 of the supplementary material of Uieda and Barbosa
(2012b). The synthetic data were produced by 11 rectangular par-
allelepipeds (Figure 5a) with density contrasts ranging from −1 to
1.2 g∕cm3. Each component was calculated on a regular grid of
51 × 51 observation points in the x- and y-directions, totaling

Figure 3. Two-dimensional sketch of the robust procedure. Black
dots represent the observed data produced by (a) the true sources
with different density contrasts ρ1, ρ2, and ρ3 (black, gray, and white
polygons, respectively). The gray and white sources are considered
nontargeted sources. The white source has a density contrast with
the opposite sign of the black and gray sources. (b) Inversion result
when given a seed only for the targeted source (black polygon) and
using the l1-norm of the residual vector (equation 4). The dashed
line in (b) represents the data predicted by the inversion result.
Large residuals over the nontargeted sources are automatically al-
lowed by the inversion. The estimated density-contrast distribution
(black prisms) recovers only the shape of the targeted source (black
outline).

Figure 4. Test with synthetic data produced by multiple targeted
and nontargeted sources. (a) Synthetic noise-corrupted data (col-
or-scale map) and data predicted by the inversion result (black con-
tour lines) of the gzz-component of the gravity gradient tensor. The
synthetic data were produced by the 11 sources shown in Figure 5a.
The predicted data is produced by the inversion result shown in
Figure 5c. (b) The gzz-component of the gravity gradient tensor pro-
duced only by the targeted sources (color-scale map) and the same
data predicted by the inversion result in Figure 5c (black contour
lines).
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7,803 observations, with a grid spacing of 0.1 km along both direc-
tions. We corrupted the synthetic data with pseudorandom Gaussian
noise with zero mean and 5 Eötvös standard deviation.
To demonstrate the efficiency of our method in retrieving only the

targeted sources even in the presence of nontargeted ones, we chose
only the sources with density contrast of 1.2 g∕cm3 (red blocks in
Figure 5a) as targets of the interpretation. Thus, we specified the set
of 13 seeds shown in Figure 5b (nine for the largest source and four
for the smallest one) and used the l1-norm of the residual vector
(equation 4) to ignore the signal of the nontargeted sources (all
sources with density contrast different from 1.2 g∕cm3) displayed
as blue and yellow blocks in Figure 5a. The inversion was per-
formed using an interpretative model consisting of 37,500 juxta-
posed rectangular prisms, μ ¼ 10−1, and δ ¼ 10−4. We used the
gyy- and gyz-components, as well as gzz because these two compo-
nents emphasize the signal of the targeted sources, which are elon-
gated in the x-direction.
Figure 4a shows the predicted data (black contour lines) of the

gzz-component produced by the estimated density-contrast dis-
tribution shown in Figure 5c. The predicted data of the gyy- and
gyz-components are provided in Figure 1 of the supplementary ma-
terial of Uieda and Barbosa (2012b). By comparing the density-
contrast estimates (Figure 5c) with the true targeted sources (red
blocks in Figure 5a), we verify the good performance of our method
in recovering targeted sources in the presence of nontargeted
sources (blue and yellow blocks in Figure 5a) yielding interfering
signals. The most striking feature of this inversion result is that it
required neither prior information about the density contrasts and
approximate depths of the nontargeted sources nor a signal separa-
tion to isolate the effect of the targeted sources. For comparison,
Figure 4b shows a colored-contour map of the gzz-component of
the gravity gradient tensor produced by the targeted sources only
(red blocks in Figure 5a) plotted against the predicted data (black
contour lines in Figure 4a, and 4b) produced by the estimated den-
sity-contrast distribution (Figure 5c). Notice that the inversion per-
formed on the synthetic data set produced by targeted and
nontargeted sources (color-scale map in Figure 4a) was able to
fit the isolated signals produced by the targeted sources as shown
in Figure 4b (black contour lines). These results confirm the ability
of our method to tolerate the large residuals caused by the nontar-
geted sources and successfully recover the targets of the interpreta-
tion. Furthermore, when performed on a standard laptop computer
with an Intel® Core™ 2 Duo P7350 2.0 GHz processor, the total
time for the inversion was approximately 46 seconds.
In Uieda and Barbosa (2012b), we also present a synthetic

example illustrating the use of the normalized l2-norm of the re-
sidual vector (equation 3) in the data-mist function in a geologic
setting composed of targeted sources only.

SENSITIVITY ANALYSIS

We present two analyses of important characteristics of our meth-
od. In the first one, we investigate the sensitivity of our method to
uncertainties in the a priori information (i.e., location and density
contrasts of the seeds). In the second analysis, we investigate the
limitations of the robust procedure that was proposed to deal with
the presence of nontargeted sources. For these purposes, we have
conducted various tests on synthetic noise-corrupted data produced
by two contiguous sources: a larger dipping source with density
contrast of 1 g∕cm3, and a smaller cubic source with density

contrast of −1 g∕cm3 (black outline in Figures 6, 7, 8, and 9).
The depth to the tops of both sources is 0.2 km. All tests were un-
dertaken on the gxx-, gxy-, gxz-, gyy-, gyz-, and gzz-components of the
gravity gradient tensor, which were computed at 150 m height on a

Figure 5. Test with synthetic data produced by multiple targeted
and nontargeted sources. (a) Perspective view of the synthetic mod-
el used to generate the synthetic data. Only sources with density
contrast 0.6 g∕cm3 (yellow) are outcropping. The sources with den-
sity contrast 1.2 g∕cm3 (red) were considered as the targets of the
interpretation. (b) Seeds used in the inversion and outline of the true
targeted sources. (c) Inversion result obtained by using the l1-norm
of the residual vector (equation 4). Prisms of the interpretative mod-
el with zero density contrast are not shown. Black lines represent the
outline of the true targeted sources.
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regular grid of 31 × 31 observation points and with grid spacing of
1 km along the x- and y-directions. The data were contaminated
with pseudorandom Gaussian noise with zero mean and standard
deviation of 0.5 Eötvös. The interpretative model used in the inver-
sions consists of 27,000 juxtaposed right rectangular prisms. In all
tests, only the large dipping source was the target of the interpreta-
tion. In the first test, we assigned three seeds (gray prisms in the
inset of Figure 6) with density contrast of 1 g∕cm3 to the targeted
dipping source. These seeds have ideal locations and correctly de-
scribe the true framework of the targeted source. Figure 6 shows the

estimated density-contrast distribution obtained by setting the inver-
sion control variables μ ¼ 1 and δ ¼ 10−4. This result demonstrates
the excellent performance of our method in recovering the true tar-
get dipping source in the presence of the nontargeted cubic source
with density contrast of −1 g∕cm3. The standard deviation of the
residual vector of the gzz-component (equation 3) is 0.54 Eötvös,
which shows that the predicted data fit the synthetic data within
the data error level of 0.5 Eötvös that was used to contaminate
the data. This test represents an ideal scenario and will be used
as a baseline for comparison with subsequent tests.

Figure 6. Sensitivity analysis. Test using ideal seed locations and
the correct density contrast of 1 g∕cm3. The outline of the true
sources is shown in solid black lines. The inversion result is shown
as gray prisms. Prisms with zero density contrast are not shown. The
inset shows the three seeds used in the inversion (gray prisms). The
location of the seeds was chosen to outline the correct dip of the
large dipping source (targeted source).

Figure 7. Analysis of the sensitivity to uncertainties in the location
of the seeds. Test using three seeds with the correct density contrast
of 1 g∕cm3 but with incorrect dip. The outline of the true sources is
shown in solid black lines. The inversion result is shown as gray
prisms. Prisms with zero density contrast are not shown. The inset
shows the three seeds used in the inversion (gray prisms), which had
the incorrect dip of the large dipping source (targeted source).

Figure 8. Analysis of the sensitivity to the reduction of the number
of seeds. Test using only a single seed and the correct density con-
trast of 1 g∕cm3. The outline of the true sources is shown in solid
black lines. The inversion result is shown as gray prisms. Prisms
with zero density contrast are not shown. The inset shows the single
seed used in the inversion (gray prism), which was located at the top
of the large dipping source (targeted source).

Figure 9. Analysis of the limitations of the robust procedure. In this
test, the smaller cubic source (nontargeted source) has a density
contrast of 1.5 g∕cm3, which has the same sign as the density con-
trast of the larger dipping source (targeted source). Test using three
seeds in ideal locations (same as used in Figure 6) with the correct
density contrast of 1 g∕cm3. The inversion result is shown as gray
prisms. Prisms with zero density contrast are not shown. The outline
of the true sources is shown in solid black lines. The inset shows the
three seeds used in the inversion (gray prisms).
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The second test was designed to assess the sensitivity of the
planting algorithm to uncertainties in the density-contrast value
of the targeted sources. Thus, we used the same seed locations
and inversion control variables as in the first test, but assigned den-
sity contrasts to the seeds that were smaller and larger than the
true value. The standard deviation of the residual vector of the
gzz-component was 0.53 Eötvös, for the case with a smaller density
contrast, and 0.56 Eötvös, for the case with a larger density contrast.
Hence, in both cases, the predicted data fit the synthetic data within
the assumed data error level. Furthermore, the estimated density-
contrast distributions (see Figures 2 and 3 in the supplementary ma-
terial of Uieda and Barbosa, 2012b) are compact and present the
correct dip of the targeted dipping source. However, by assigning
a density contrast smaller than the true one, the estimated density-
contrast distribution (see Figure 2 in Uieda and Barbosa, 2012b)
displays a larger volume when compared with the true source.
On the other hand, by assigning a density contrast larger than
the true one, the estimated density-contrast distribution (see Figure 3
in Uieda and Barbosa, 2012b) has a smaller volume when compared
with the true source.
The third test had the purpose of assessing the sensitivity of our

method to the wrong positioning of the seeds that define frame-
work of the targeted source. For this purpose, we used three seeds
(gray prisms in the inset of Figure 7) with the correct density con-
trast of 1 g∕cm3 but with their positions defining the wrong dip of
the true targeted dipping source. We set μ ¼ 1 and δ ¼ 10−4.
Despite the error in defining the locations of the seeds, the esti-
mated density-contrast distribution (Figure 7) still retains the main
feature of the true targeted source. However, the solution is not
compact and the standard deviation of the residual vector of
the gzz-component is 0.70 Eötvös, which shows that the predicted
data does not explain the synthetic data within the assumed data
error level.
In the fourth test, we assessed the sensitivity of our method to a

substantial reduction in the number of seeds. Hence, we assigned a
single seed (gray prism in the inset of Figure 8) with density
contrast of 1 g∕cm3. The choice of positioning the seed at the
top of the targeted dipping source is based on a hypothetical pre-
vious interpretation provided, for example, by Euler deconvolution.
We performed several inversions by setting δ ¼ 10−4 and varying
μ from 1 to 1010. The estimated density-contrast distribution
(Figure 8) is not compact and is not able to reconstruct the true tar-
geted dipping source, even when μ is assigned a large value (e.g.,
1010). Additionally, the standard deviation of the residual vector of
the gzz-component is 2.01 Eötvös, which shows that the synthetic
data are not fitted by the predicted data within the assumed errors.
The fifth test was meant to analyze the limitations of the proposed

robust procedure to effectively ignore the interfering signal of the
nontargeted cubic source. We kept the targeted dipping source as it
was and changed the density-contrast value of the nontargeted cubic
source to 1.5 g∕cm3. This was done to simulate targeted and non-
targeted sources with density contrasts of the same sign. We used
the same seeds as in the first test (inset of Figure 6) with the correct
density contrast of 1 g∕cm3. These seeds correctly describe the true
framework of the targeted dipping source. The inversion was per-
formed using μ ¼ 1 and δ ¼ 10−4. We found that the estimated den-
sity-contrast distribution (Figure 9) is not compact and does not
retrieve the true targeted source. However, the standard deviation
of the residual vector of the gzz-component is 0.71 Eötvös, which

shows that this solution does not explain the synthetic data within
the assumed data error level.
Figure 4 of the supplementary material of Uieda and Barbosa

(2012b) shows the synthetic noise-corrupted and predicted data
of the gzz-component of the gravity gradient tensor for all tests.

APPLICATION TO REAL DATA

One of the most important iron provinces in Brazil is the Quad-
rilátero Ferrífero (QF), located in the São Francisco Craton, south-
eastern Brazil. Most of the iron ore bodies in the QF are hosted in
the oxided, metamorphosed and heterogeneously deformed banded
iron formation (BIF) of the Cauê Formation, the so-called itabirites.
The itabirites are associated with the Minas Supergroup and contain
iron ore oxide facies, such as hematites, magnetites, and martites.
We applied our method to estimate the geometry and extent of
the iron ore deposits of the Cauê Formation using the data from
an airborne gravity gradiometry survey performed in this area (col-
or-scale maps in Figure 10a–10c). The signals associated with the
iron ore bodies (targeted sources) are more prominent in the gyy-,
gyz-, and gzz-components of the measured gravity gradient
tensor (elongated southwest–northeast feature in Figure 10a–
10c). This data set also shows interfering signals caused by other
sources, which will be considered as nontargeted sources in our
interpretation.
The inversion was performed on 4,582 measurements of each of

the gyy-, gyz-, and gzz-components of the gravity gradient tensor re-
sulting in a total of 13,746 measurements. We applied our robust
procedure to recover only the targeted sources (iron ore bodies)
in the presence of the nontargeted sources. Thus, we used the
l1-norm of the residual vector (equation 4) and provided a set
of 46 seeds (black stars in Figure 10) for the targeted iron ore
bodies of the Cauê Formation. The horizontal locations of the seeds
were chosen based on the peaks of the elongated southwest-
northeast positive feature (associated with the iron ore bodies) in
the color-scale map of the gzz-component (Figure 10c). The depths
of the seeds were chosen based on borehole information and pre-
vious geologic interpretations of the area. We assigned a density-
contrast value of 1 g∕cm3 for the seeds because the data were ter-
rain corrected using a density of 2.67 g∕cm3 and the assumed den-
sity of the iron ore deposits is 3.67 g∕cm3. The interpretative model
was formed by a regular mesh cropped to the area of interest and
consists of 164,892 prisms which follow the topography of the
area (Figure 11a). The inversion was performed using μ ¼ 0.1

and δ ¼ 5 × 10−5.
The estimated density-contrast distribution corresponding to the

iron ore bodies of the Cauê itabirite is shown in red in Figure 11.
Cross sections of the estimated density contrast distribution
(Figure 12) show that the estimated iron ore bodies are compact
and have nonoutcropping parts. Figure 10d–10f shows the pre-
dicted data caused by the estimated density-contrast distribution
shown in Figure 11. For all three components, the inversion is able
to fit the elongated southwest-northeast feature associated with the
iron ore deposits (targeted sources) and successfully ignore the
other signals presumably produced by the nontargeted sources
(Figure 10). These results show the ability of our method to pro-
vide a compact estimate of the iron ore deposits. We emphasize
that this was possible without prior information about the density
contrasts and approximate depths of the nontargeted sources and
without isolating the signals produced by the targeted sources. All
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these requirements would be impractical in this highly complex
geologic setting. Our results are in close agreement with previous
interpretations by Martinez et al. (2010). Furthermore, when per-
formed on a standard laptop computer, the total time for the in-
version was approximately 14 minutes.

Figure 11. Results from the application to real data from the Quad-
rilátero Ferrífero, southeastern Brazil. Dashed lines show the loca-
tion of the cross sections in Figure 12. (a-c) Perspective views of the
estimated density-contrast distribution, where prisms with zero den-
sity contrast are not shown or shown in gray and prisms with density
contrast 1 g∕cm3, corresponding to the iron orebody of the Cauê
itabirite, are shown in solid or transparent red. The seeds used in
the inversion are shown as black prisms.

Figure 10. Application to real data from an airborne gravity gradio-
metry survey over a region of the Quadrilátero Ferrífero, southeast-
ern Brazil. The observed (a-c) and predicted (d-f) gyy-, gyz-, and gzz-
components of the gravity gradient tensor. The latter were produced
by the estimated density-contrast distribution shown in Figure 11.
Black stars represent the horizontal coordinates of the seeds used in
the inversion.

Figure 12. Results from the application to real data from the Quad-
rilátero Ferrífero, southeastern Brazil. Cross sections of the inver-
sion result shown in Figure 11 at horizontal coordinate x equal to
(a) 1.00 km and (b) 5.55 km. Prisms with zero density contrast are
shown in gray and prisms with density contrast 1 g∕cm3, corre-
sponding to the iron orebody of the Cauê itabirite, are shown in red.
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DISCUSSION

The proposed inversion method incorporates a priori information
into the solution through user-specified seeds. The positions of the
seeds determine roughly where the “skeletons” of the estimated
targeted sources will be. Whereas, the density-contrast values as-
signed to the seeds determine the density contrasts of the estimated
targeted sources. Therefore, one must provide adequate seeds to ob-
tain good results. In cases where the density-contrast values of the
seeds are poorly assigned, the volumes of the estimated sources will
be either greater or smaller than the true ones. However, their overall
shape and mass do not appear to be affected. Tests on synthetic data
(Figures 7 and 8) indicate that a reasonable fit of the observed data
is not obtained if the number of seeds used or their positions are
inadequate. Moreover, in these cases, our method is not able to es-
timate compact sources. Rather, the estimated sources exhibit
shapes that do not resemble geologic structures, such as the tenta-
cle-like structures shown in Figures 7 and 8. Thus, the presence of
these “tentacles” in a solution, combined with a poor fit of the ob-
served data may be used as heuristic criteria to evaluate the correct-
ness of the locations of the seeds. In cases where the errors in the
locations are small, the direction in which the tentacles grow may
indicate the direction in which lies a better position for the seeds
(Figure 7). Thus, the positions of the seeds can be manually ad-
justed by the user until an acceptable data fit is obtained and the
estimated sources are not only compact, but resemble geologic
structures. We emphasize that this procedure is only practical be-
cause our method is computationally efficient, which is due to
the restricted systematic search of the planting algorithm and the
lazy evaluation of the sensitivity matrix. An alternative approach
to determine the locations of the seeds is to use interpretation meth-
ods that estimate the centers of mass of the sources (e.g., Medeiros
and Silva, 1995; Beiki and Pedersen, 2010). Medeiros and Silva
(1995) achieve this by inverting the source moments obtained from
the gravity anomaly. On the other hand, Beiki and Pedersen (2010)
use the eigenvectors of the gravity gradient tensor to estimate the
coordinates of the centers of mass of the sources. However, we
stress that if the fit of the observed data is acceptable and the es-
timated sources present geologically reasonable shapes, the hypoth-
esis about the seeds must be accepted. Hence, the estimated solution
must be accepted as a possible solution, even if it differs from the
true one.
Another type of a priori information required by our method is

whether or not a given signal is due to the targeted sources. This
information is conveyed through the horizontal locations of the
seeds associated with the targeted sources only. Because of this
information and the mass concentration constraint imposed by
the regularizing function (equation 7), the estimated sources
cannot grow too far from the seeds. Furthermore, the use of the
l1-norm of the residual vectors (equation 4) reduces the influence
of the signal of the nontargeted sources. Nonetheless, the use of
the l1-norm alone cannot guarantee the robustness of our method
to the presence of nontargeted sources. Tests on synthetic data
(Figures 5 and 9) show that the robustness requires some form
of “barrier” between the targeted and nontargeted sources. We
concluded from our tests that these barriers must be sources
with a density contrast of opposite sign of the targeted sources.
These barriers work as a natural obstacle for the growth of the
estimated density-contrast distribution (Figure 5). We also stress
that even in the case where the targeted and nontargeted sources

have opposite signs, the robustness of our method may fail if
the signals produced by these sources present a substantial over-
lap. In this case the estimated volume of the targeted source will be
underestimated.

CONCLUSIONS

We have presented a new method for the 3D inversion of gravity
gradient data that uses a systematic search algorithm. We parame-
trized the earth’s subsurface as a grid of juxtaposed right rectangular
prisms with homogeneous density contrasts. The estimated density-
contrast distribution is then iteratively built through the successive
accretion of new elements around user-specified prisms called
“seeds.” The choice of seeds is used to incorporate into the solution
prior information about the density-contrast values and the approx-
imate location of the sources. Our method is able to retrieve multi-
ple sources with different locations, geometries, and density
contrasts by allowing each seed to have a different density contrast.
Furthermore, we devised a robust procedure that, in some situations,
recovers only targeted sources when in the presence of nontargeted
sources that yield interfering signals. Thus, prior information about
density contrasts and approximate depths of the nontargeted sources
is not required. In addition, the signal of the targeted sources does
not need to be previously isolated to perform the inversion. In real
world scenarios, both of the previously stated requirements would
be highly impractical, or even impossible.
The developed inversion method has low processing time and

computer memory usage because there are no matrix multiplica-
tions or linear systems to be solved. Further computational effi-
ciency is achieved by implementing a lazy evaluation of the
sensitivity matrix. These optimizations make feasible the inversion
of the large data sets encountered in airborne gravity gradiometry
surveys while using an interpretative model composed of a large
number of prisms. Tests on synthetic data and real data from an
airborne gravity gradiometry survey show that our method is able
to recover compact bodies despite the presence of interfering signals
produced by nontargeted sources. However, the developed method
requires a substantial amount of prior information. Thus, it is not
suitable for interpretations on a regional scale lacking detailed geo-
logic information. Instead, our method should be applied on loca-
lized high-resolution interpretations of well constrained targets.
This makes our inversion method more suitable to be employed
in later stages of an exploration program, when geologic mappings
and boreholes are available. Therefore, ideal geologic targets would
be compact 3D bodies with sharp boundaries, like salt domes,
orebodies, and igneous intrusions.
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